

# Comune di Capoterra



# Città Metropolitana di Cagliari

Realizzazione di una rotatoria di accesso al nuovo complesso commerciale da realizzarsi nella S.P. 91 in corrispondenza dell'intersezione tra la S.P. 91 e la via Ischia in comune di Capoterra

| tito | Ю | е | la | bo | ra | ıto | Ċ |
|------|---|---|----|----|----|-----|---|

Relazione tecnica pavimentazione stradale

| CIG: | Data:   | Livello Progettuale:                      | Scala: | Codice Elaborato: | Revisione Elaborato: |
|------|---------|-------------------------------------------|--------|-------------------|----------------------|
| -    | 07/2024 | Progetto di fattibilità tecnico-economica | -      | C5                | A                    |

Committente:

Sa Idanu Real Estate S.r.l.s

Gruppo di Lavoro: Arch. Matteo Cabras



Progettista:

Dott. Ing. Alessandro Coda Dott. Ing. Cristina Contu Dott. Ing. Francesco Porru

via Malta 25 09124 Cagliari, ITALY Tel. +39 070 275939 www.mlab-srl.com



# Realizzazione di una rotatoria di accesso al nuovo complesso commerciale da realizzarsi nella S.P. 91 in corrispondenza dell'intersezione tra la S.P. 91 e la via Ischia in comune di Capoterra

Studio di fattibilità Tecnico-Economica

Relazione tecnica Pavimentazione Stradale



# Dati di Progetto

| Cliente            | Sa Idanu S.r.l.s                        |
|--------------------|-----------------------------------------|
| Area di Intervento | SP 91 – via Ischia (Residenza del Sole) |
| Data di inizio     | <01 giugno 2024>                        |
| Data di chiusura   | <31 luglio 2024>                        |

# Elenco delle consegne

| Versione | Data di consegna | Nome del file                                                 |
|----------|------------------|---------------------------------------------------------------|
| 00       | <31 luglio 2024> | Relazione tecnica pavimentazione Stradale rotatoria sp91.docx |
| 00       |                  |                                                               |
| 00       |                  |                                                               |

# Staff

| Ruolo                    | Nome                 | Indirizzo e-mail    |
|--------------------------|----------------------|---------------------|
| Responsabile di progetto | Ing. Alessandro Coda | acoda@mlab-srl.com  |
| Progetto Stradale        | Ing. Francesco Porru | fporru@mlab-srl.com |
| Revisione elaborati      | Ing. Cristina Contu  | ccontu@mlab-srl.com |

# Consulente

| Società                  | MLab s.r.l.                            |
|--------------------------|----------------------------------------|
| Persona di contatto      | ing. Alessandro Coda                   |
| Indirizzo sede operativa | Via Malta, 25 - 09124 Cagliari (Italy) |
| Telefono                 | +39 070 275939                         |
| E-mail                   | acoda@mlab-srl.com - info@mlab-srl.com |



# Sommario

| 1    | Premessa                                | 4    |
|------|-----------------------------------------|------|
| 2    | Descrizione dell'intervento di progetto | 4    |
| 3    | Traffico previsto                       | 5    |
| 4    | Traffico sopportabile                   | 9    |
| 5    | Verifica della pavimentazione           | . 13 |
| Indi | ce delle Figure                         | . 14 |
| Indi | ce delle Tabelle                        | 14   |



#### 1 Premessa

Oggetto della presente relazione è la verifica con il metodo dell'AASHTO Guide for Design of Pavement Structure della pavimentazione stradale prevista nel progetto di fattibilità tecnico-economica per la realizzazione di una nuova rotatoria all'intersezione tra la SP 91 al km 0+200, la via Ischia (ingresso al quartiere della Residenza del Sole) e la strada di accesso alla nuova lottizzazione da realizzarsi a lato della SP 91, in comune di Capoterra

## 2 Descrizione dell'intervento di progetto

L'intervento di progetto consiste nell'adeguamento dell'intersezione mediante la realizzazione di una rotatoria compatta a 4 bracci, avente diametro esterno pari a 30 metri, volta al miglioramento della sicurezza stradale dell'intersezione, oltre a permettere l'accesso alla nuova lottizzazione da realizzarsi a lato della SP 91.

Oltre ai rami principali, costituiti dalla SP 91 (direttrice nord ovest – sud est), sono stati inseriti in rotatoria l'accesso alla residenza del Sole (Via Ischia) e il nuovo braccio di accesso alla lottizzazione. I due rami della SP 91 e via ischia si intersecano ortogonalmente, mentre il ramo di accesso alla lottizzazione risulta essere leggermente angolato.



Figura 1 - Intervento progettuale - Dettaglio



Per quanto riguarda la pavimentazione stradale, si prevede la realizzazione di una pavimentazione flessibile di 52 cm, composta dai seguenti strati:

- 4 cm di usura in conglomerato bituminoso chiuso;
- 7 cm di collegamento (binder) in conglomerato bituminoso aperto;
- 16 cm di base in conglomerato bituminoso;
- 25 cm di fondazione in misto granulare non legato.

Tra lo strato di usura e quello di collegamento si prevede l'interposizione di una mano di attacco impermeabilizzante.

## 3 Traffico previsto

Per la determinazione del traffico previsto, si è fatto riferimento ai dati di traffico forniti dal Cirem – Università di Cagliari, riguardanti una campagna di rilievo continuativa, da ripetersi semestralmente, nelle aree circostanti i lavori di costruzione della "Nuova SS 195". Una delle sezioni di rilievo è prevista nella SP 91, a meno di 1 km dall'area di realizzazione della rotatoria. I rilievi hanno durata settimanale. I più recenti sono stati realizzati nel gennaio 2024. I dati elaborati indicano un TGM feriale pari a 11.120 veicoli/giorno, con una percentuale di mezzi pesanti del 2,54%. Si sono inoltre ipotizzati una vita utile della pavimentazione di 25 anni e un tasso di crescita dei veicoli commerciali del 1%.

| Direzione del Flusso | TGM<br>Feriale veicoli<br>leggeri | TGM feriale<br>Camion<br>Autotreni<br>autoarticolati | TGM Totale | % Camion Autotreni autoarticolati |
|----------------------|-----------------------------------|------------------------------------------------------|------------|-----------------------------------|
| Ascendente           | 5480                              | 148                                                  | 5628       | 2.63%                             |
| Discendente          | 5358                              | 134                                                  | 5492       | 2.44%                             |
| TOTALE               | 10838                             | 282                                                  | 11120      | 2.54%                             |

Tabella 1 - Dati di traffico SP 91, gennaio 2024 (Fonte: CIREM)

Il traffico così determinato è stato poi convertito in un numero di passaggi di assi standard equivalenti da 8,2 t, impiegando il criterio suggerito dall'AASHO e riferendosi allo spettro di traffico di veicoli commerciali definito nel Catalogo Italiano delle Pavimentazioni Stradali per le strade tipo "extraurbane secondarie ordinarie" (vedi Tabella 2 e Tabella 3), qual è quella oggetto della presente verifica.



Tab. 2 - Tipi di veicoli commerciali, numero di assi, distribuzione dei carichi per asse.

| Tipo di veicolo               | Nº Assi | Distribuzione dei carichi per asse in KN |
|-------------------------------|---------|------------------------------------------|
| 1) autocarri leggeri          | 2       | ↓10 ↓20                                  |
| 2) " "                        | "       | ↓15 ↓30                                  |
| 3) autocarri medi e pesanti   | н       | ↓40 ↓80                                  |
| 4) " " "                      | "       | ↓50 ↓110                                 |
| 5) autocarri pesanti          | 3       | ↓40 ↓80 ↓80                              |
| 6) " "                        | "       | ↓60 ↓100↓100                             |
| 7) autotreni e autoarticolati | 4       | ↓40 ↓90 ↓80 ↓80                          |
| 8) " "                        | "       | ↓60 ↓100 ↓100 ↓100                       |
| 9) " "                        | 5.      | ↓40 ↓80↓80 ↓80 ↓80                       |
| 10) " "                       |         | ↓60 ↓90↓90 ↓100↓100                      |
| 11) " "                       | "       | ↓40 ↓100 ↓80 ↓80 ↓80                     |
| 12) " "                       | "       | ↓60 ↓110 ↓90 ↓90 ↓90                     |
| 13) mezzi d'opera             |         | ↓50 ↓120 ↓130↓130↓130                    |
| 14) autobus                   | 2       | ↓40 ↓80                                  |
| 15) "                         | 2       | ↓60 ↓100                                 |
| 16) "                         | 2       | ↓50 ↓80                                  |

Tabella 2 - Fonte: Catalogo Italiano delle Pavimentazioni Stradali - CNR

Tab. 3 - Tipici spettri di traffico di veicoli commerciali per ciascun tipo di strada.

|                                                                               | Tipo di veicolo |      |      |      |     |      |     |     |       |     |     |     |      |      |      |      |
|-------------------------------------------------------------------------------|-----------------|------|------|------|-----|------|-----|-----|-------|-----|-----|-----|------|------|------|------|
|                                                                               |                 |      |      |      | 11  | 0 0  | di  | v   | e 1 ( | 0 1 | 0   |     |      |      |      |      |
| Tipo di strada                                                                | 1               | 2    | 3    | 4    | 5   | 6    | 7   | 8   | 9     | 10  | 11  | 12  | 13   | 14   | 15   | 16   |
| 1) autostrade extraurbane                                                     | 12.2            |      | 24.4 | 14.6 | 2.4 | 12.2 | 2.4 | 4.9 | 2.4   | 4.9 | 2.4 | 4.9 | 0.10 |      |      | 12.2 |
| 2) " urbane                                                                   | 18.2            | 18.2 | 16.5 |      |     |      |     |     |       |     |     |     | 1.6  | 18.2 | 27.3 |      |
| <ol> <li>strade extr. principali e<br/>secondarie a forte traffico</li> </ol> |                 | 13.1 | 39.5 | 10.5 | 7.9 | 2.6  | 2.6 | 2.5 | 2.6   | 2.5 | 2.6 | 2.6 | 0.5  |      |      | 10.5 |
| <ol> <li>strade extraurb. second.<br/>ordin.</li> </ol>                       |                 |      | 58.8 | 29.4 |     | 5.9  |     | 2.8 |       |     | *** |     | 0.2  |      |      | 2.9  |
| 5) " extr. secondturistiche                                                   | 24.5            |      | 40.8 | 16.3 |     | 4.15 |     | 2   |       |     |     |     | 0.05 |      |      | 12.2 |
| 6) " urbane di scorrimento                                                    | 18.2            | 18.2 | 16.5 |      |     |      |     |     |       |     |     |     | 1.6  | 18.2 | 27.3 |      |
| 7) " di quartiere e locali                                                    | 80              |      |      |      |     |      |     |     |       |     |     |     |      | 20   |      |      |
| 8) corsie preferenziali                                                       |                 |      |      |      |     |      |     |     |       |     |     |     |      | 47   | 53   |      |

Tabella 3 - Fonte: Catalogo Italiano delle Pavimentazioni Stradali - CNR

Nota la composizione degli assi che formano ciascuno dei 16 tipi di veicoli commerciali, si è passato dallo spettro di traffico a quello degli assi, così come rappresentato nella tabella seguente dove per ciascuna riga è riportato il numero di assi che compongono il veicolo commerciale (Tabella 4).



| Tipo veicolo | Percentuale |             |   |   |   |   |   | Peso | assi | (ton) |   |    |    |    |    |
|--------------|-------------|-------------|---|---|---|---|---|------|------|-------|---|----|----|----|----|
| commerciale  | %           |             | 1 | 2 | 3 | 4 | 5 | 6    | 7    | 8     | 9 | 10 | 11 | 12 | 13 |
| 1            | 0,00%       |             | 1 | 1 |   |   |   |      |      |       |   |    |    |    |    |
| 2            | 0,00%       |             |   | 1 | 1 |   |   |      |      |       |   |    |    |    |    |
| 3            | 58,80%      | peso        |   |   |   | 1 |   |      |      | 1     |   |    |    |    |    |
| 4            | 29,40%      | ă           |   |   |   |   | 1 |      |      |       |   |    | 1  |    |    |
| 5            | 0,00%       | per         |   |   |   | 1 |   |      |      | 2     |   |    |    |    |    |
| 6            | 5,90%       | ≒           |   |   |   |   |   | 1    |      |       |   | 2  |    |    |    |
| 7            | 0,00%       | distribuiti |   |   |   | 1 |   |      |      | 2     | 1 |    |    |    |    |
| 8            | 2,80%       | ist is      |   |   |   |   |   | 1    |      |       |   | 3  |    |    |    |
| 9            | 0,00%       |             |   |   |   | 1 |   |      |      | 4     |   |    |    |    |    |
| 10           | 0,00%       | assi        |   |   |   |   |   | 1    |      |       | 2 | 2  |    |    |    |
| 11           | 0,00%       | ਚ           |   |   |   | 1 |   |      |      | 3     |   | 1  |    |    |    |
| 12           | 0,00%       | Numero      |   |   |   |   |   | 1    |      |       | 3 |    | 1  |    |    |
| 13           | 0,20%       | Ę           |   |   |   |   | 1 |      |      |       |   |    |    | 1  | 3  |
| 14           | 0,00%       | Ž           |   |   |   | 1 |   |      |      | 1     |   |    |    |    |    |
| 15           | 0,00%       |             |   |   |   |   |   | 1    |      |       |   | 1  |    |    |    |
| 16           | 2,90%       |             |   |   |   |   | 1 |      |      | 1     |   |    |    |    |    |

Tabella 4 - Spettro degli assi

Attraverso il prodotto di ciascun elemento della tabella precedente per il vettore delle frequenze dei veicoli commerciali, sono state determinate le frequenze parziali di ciascun asse, così come riportato nella tabella che segue.

| Tipo veicolo | Percentuale |             | Frequenze parziali degli assi |   |   |       |       |      |   |       |   |       |       |      |      |  |
|--------------|-------------|-------------|-------------------------------|---|---|-------|-------|------|---|-------|---|-------|-------|------|------|--|
| commerciale  | %           |             | 1                             | 2 | 3 | 4     | 5     | 6    | 7 | 8     | 9 | 10    | 11    | 12   | 13   |  |
| 1            | 0,00%       |             |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 2            | 0,00%       | beso        |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 3            | 58,80%      |             |                               |   |   | 58,8% |       |      |   | 58,8% |   |       |       |      |      |  |
| 4            | 29,40%      | per         |                               |   |   |       | 29,4% |      |   |       |   |       | 29,4% |      |      |  |
| 5            | 0,00%       | 1           |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 6            | 5,90%       | distribuiti |                               |   |   |       |       | 5,9% |   |       |   | 11,8% |       |      |      |  |
| 7            | 0,00%       | istr        |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 8            | 2,80%       | si d        |                               |   |   |       |       | 2,8% |   |       |   | 8,4%  |       |      |      |  |
| 9            | 0,00%       | asa         |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 10           | 0,00%       |             |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 11           | 0,00%       | degli       |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 12           | 0,00%       | za          |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 13           | 0,20%       | en          |                               |   |   |       | 0,2%  |      |   |       |   |       |       | 0,2% | 0,6% |  |
| 14           | 0,00%       | Frequenza   |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 15           | 0,00%       | Fre         |                               |   |   |       |       |      |   |       |   |       |       |      |      |  |
| 16           | 2,90%       |             |                               |   |   |       | 2,9%  |      |   | 2,9%  |   |       |       |      |      |  |
|              |             |             |                               |   |   | 58,8% | 32,5% | 8,7% |   | 61,7% |   | 20,2% | 29,4% | 0,2% | 0,6% |  |

Tabella 5 - Frequenze parziali degli assi per ciascuna categoria di veicolo



Sono stati inoltre specificati gli assi equivalenti di 8,2 t in funzione delle frequenze parziali degli assi appena determinati ed in funzione della legge alla quarta potenza, così come riportato nella tabella seguente.

| Peso asse (ton) | Frequenza<br>asse | Coefficiente equivalenza 4^ potenza | Transiti da 8 t |  |
|-----------------|-------------------|-------------------------------------|-----------------|--|
|                 |                   |                                     |                 |  |
| 1               | 0,0%              | 0,00024                             | 0,00%           |  |
| 2               | 0,0%              | 0,00391                             | 0,00%           |  |
| 3               | 0,0%              | 0,01978                             | 0,00%           |  |
| 4               | 58,8%             | 0,06250                             | 3,68%           |  |
| 5               | 32,5%             | 0,15259                             | 4,96%           |  |
| 6               | 8,7%              | 0,31641                             | 2,75%           |  |
| 7               | 0,0%              | 0,58618                             | 0,00%           |  |
| 8               | 61,7%             | 1,00000                             | 61,70%          |  |
| 9               | 0,0%              | 1,60181                             | 0,00%           |  |
| 10              | 20,2%             | 2,44141                             | 49,32%          |  |
| 11              | 29,4%             | 3,57446                             | 105,09%         |  |
| 12              | 0,2%              | 5,06250                             | 1,01%           |  |
| 13              | 0,6%              | 6,97290                             | 4,18%           |  |
| TOTALE          | 212,1%            | TOTALE                              | 232,69%         |  |

Tabella 6 - Frequenza parziale degli assi in transiti da 8 t

Risulta pertanto che il passaggio di 100 veicoli commerciali determina il transito di 212,1 assi di differente peso, che corrispondono al passaggio di 232,69 assi equivalenti da 8,2 t.

Viene infine determinato il volume di traffico che si prevede interesserà la sovrastruttura durante la sua vita utile in termini di numero di transiti totali di assi standard equivalenti da 8,2 t (W18) alla fine della vita utile, applicando la seguente espressione:

$$W_{18} = gg \times n^{\circ}sett \times TGM \times p_d \times p \times p_l \times d \times n \times r \times C_{eq} \times \frac{(1+r)^n - 1}{r}$$

#### e assumendo:

- Numero giorni commerciali per settimana (gg): 6;
- Numero settimane commerciali per anno (n° sett): 52;
- Traffico giornaliero medio (TGM) = 10.838;
- Aliquota di traffico per direzione più carica (p<sub>d</sub>) = 0,51;
- Aliquota di veicoli commerciali (p) = 0,0260;
- Aliquota di veicoli commerciali sulla corsia di marcia normale (p<sub>i</sub>) = 1,00;
- Coefficiente di dispersione delle traiettorie (d) = 0,8;
- Vita Utile in anni (n) = 25
- Tasso di accrescimento del traffico durante la vita utile (r) = 0,01;
- Coefficiente di equivalenza assi standard per veicolo commerciale (C<sub>eq</sub>) = 2,327.



Il numero totali di transiti di assi standard equivalenti da 8,2 t alla fine della vita utile risulta pertanto:

$$W_{18} = 2.338.914$$

## 4 Traffico sopportabile

Nel metodo AASHTO, ad ogni strato di spessore  $H_i$  viene assegnato un coefficiente di struttura  $a_i$ , che rappresenta il contributo dello strato alla prestazione complessiva della pavimentazione; un ulteriore fattore di viene introdotto per considerare gli effetti del drenaggio.

Nella presente verifica vengono adottati i valori medi dei coefficienti di struttura riportati nella Tabella 7 riportata di seguito (fonte :Ingegneria stradale vol. II - P. Ferrari e F. Giannini).

| Materiali                        | Coefficienti  |
|----------------------------------|---------------|
| Misto granulare                  | 0,11          |
| Misto granulare con frantumato   | 0,13-0,14     |
| Macadam                          | 0,12          |
| Misto bitumato                   | 0,20-0,22     |
| Conglomerato bituminoso per base | 0,25-0,30     |
| Misto cementato                  | 0,25-0,30     |
| Misto legato con scorie          | 0,22-0,30 (1) |
| Terra stabilizzata con cemento   | 0,20          |
| Pozzolana e calce                | 0,18          |
| Binder                           | 0,36-0,40     |
| Usura normale                    | 0,40-0,44     |
| Usura grenue                     | 0,44-0,46     |

Tabella 7 - Coefficienti dell'indice di spessore (fonte: Ingegneria stradale vol. II - P. Ferrari e F. Giannini)

Il contributo di ogni singolo strato alla prestazione complessiva della pavimentazione è dato dal prodotto dei due coefficienti  $a_i$ , di per il suo spessore  $H_i$ .

Il valore del parametro indicativo della resistenza della sovrastruttura alle sollecitazioni del traffico SN (structural number), che tiene conto degli spessori degli strati ( $H_i$ ), delle caratteristiche dei materiali dei vari strati (ai), del drenaggio assicurato dagli strati ( $d_i$ ), viene determinato attraverso la seguente espressione:

$$SN = 0.0394 \times \sum_{i} a_i \times H_i \times d_i$$

dove:



- SN = indice di struttura (structural number) della sovrastruttura;
- a<sub>i</sub> = coefficiente di strato dell'i-esimo strato;
- H<sub>i</sub> = spessore dell'i-esimo strato in cm;
- d<sub>i</sub> = coefficiente di drenaggio dell'i-esimo strato.

I coefficienti di drenaggio  $d_i$  sono usati per modificare il valore del coefficiente di spessore  $a_i$  di ogni strato non stabilizzato al di sopra del sottofondo in una pavimentazione flessibile.

Gli strati in materiali legati non sono influenzati da un eventuale cattivo drenaggio dello strato o dal tempo in cui si trova in condizioni di saturazione. In questi casi il coefficiente di drenaggio vale comunque 1.

Per gli altri strati i coefficienti di drenaggio sono determinati considerando la qualità del drenaggio e il tempo, in percentuale, che la pavimentazione è esposta a livelli di umidità vicino alla saturazione. Nel caso in oggetto per lo strato di fondazione, cautelativamente, sono state assunte medie caratteristiche di drenaggio e un coefficiente di pari a 1.

| Table 2.4.             | Recommended m <sub>i</sub> Values for Modifying Structural Layer Coefficients of Untreated Base and Subbase Materials in Flexible Pavements  Percent of Time Pavement Structure is Exposed to Moisture Levels Approaching Saturation |           |           |                     |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------------------|--|
| Quality of<br>Drainage |                                                                                                                                                                                                                                      |           |           |                     |  |
|                        | Less Than<br>1%                                                                                                                                                                                                                      | 1-5%      | 5-25%     | Greater Than<br>25% |  |
| Excellent              | 1 40-1 35                                                                                                                                                                                                                            | 1 35-1 30 | 1 30-1 20 | 1 20                |  |
| Good                   | 1 35-1 25                                                                                                                                                                                                                            | 1 25-1 15 | 1 15-1 00 | 1 00                |  |
| Fair                   | 1 25-1 15                                                                                                                                                                                                                            | 1 15-1 05 | 1 00-0 80 | 0 80                |  |
| Poor                   | 1 15-1 05                                                                                                                                                                                                                            | 1 05-0 80 | 0 80-0 60 | 0 60                |  |
| Very poor              | 1 05-0 95                                                                                                                                                                                                                            | 0 95-0 75 | 0 75-0 40 | 0 40                |  |

Tabella 8 - Valori di riferimento del coefficiente di drenaggio (fonte: AASHTO Guide for Design of Pavement Structure)

La pavimentazione in oggetto è di tipo flessibile, poggiante su un sottofondo con indice CBR assunto pari a 5%, strato di fondazione in misto granulare non legato di 25 cm, strato di base in conglomerato bituminoso di 16 cm, strato di collegamento (binder) in conglomerato bituminoso aperto di 7 cm e strato di usura in conglomerato bituminoso chiuso di 4 cm.

Gli spessori ed i coefficienti  $a_i$  e  $d_i$  assunti sono riportati nella seguente tabella:

| Strati     | Hi<br>spessore<br>[mm] | di<br>coeff. di<br>drenaggio | ai<br>coeff. di<br>spessore | H <sub>i</sub> x d <sub>i</sub> x a <sub>i</sub> | CBR |
|------------|------------------------|------------------------------|-----------------------------|--------------------------------------------------|-----|
| Sottofondo |                        |                              |                             |                                                  | 5   |
| Fondazione | 250                    | 1                            | 0,11                        | 27,5                                             |     |
| Base CB    | 160                    | 1                            | 0,275                       | 44,0                                             |     |
| Binder CB  | 70                     | 1                            | 0,38                        | 26,6                                             |     |
| Usura CB   | 40                     | 1                            | 0,42                        | 16,8                                             |     |
| TOTALE     | 520                    |                              | Sommano                     | 114,9                                            |     |

Tabella 9 - Tabella per il calcolo dell'indice di struttura (Structural number) della pavimentazione



L'indice di struttura della pavimentazione SN risulta così pari a 4,52706.

Noto l'indice di struttura SN, la metodologia AASHTO prevede la determinazione del massimo numero di assi W18max che la pavimentazione può sopportare durante la sua vita utile attraverso l'applicazione della seguente espressione:

$$log W_{18max} = Z_R \times S_0 + 9,36 \times log(SN+1) - 0,20 + \frac{log(\frac{\Delta PSI}{4,2-1,5})}{0,40 + \frac{1094}{(SN+1)^{5,19}}} + 2,32 \times log M_R - 8,07$$

#### dove:

- Z<sub>R</sub> è il fattore di affidabilità, ricavato dalle Tabella 10 e Tabella 11, per strade extraurbane secondarie ordinarie (pari a -1,037);
- S<sub>0</sub> è la deviazione standard relativa all'aleatorietà delle previsioni di traffico e delle prestazioni della pavimentazione, assunta pari a 0,45;
- ΔPSI è la differenza tra l'indice di funzionalità della pavimentazione all'inizio e al termine della vita utile, assunto pari a 1,7 (valore iniziale del PSI pari a 4,2 e finale ammissibile pari a 2,5);
- M<sub>R</sub> è il modulo resiliente del sottofondo, espresso in psi (pari a 7.251,90);
- SN è l'indice di struttura, così come precedentemente determinato pari a 4,52706.

Tahella 9 - Affidabilità e PSI

| Tipo di strada                                           | Affidabilità (%) | PSI |
|----------------------------------------------------------|------------------|-----|
| 1) Autostrade extraurbane                                | 90               | 3   |
| 2) " urbane                                              | 95               | 3   |
| 3) Strade extr. principali e secondarie a forte traffico | 90               | 2.5 |
| 4) Strade extraurbane secondarie - ordinarie             | 85               | 2.5 |
| 5) " -turistiche                                         | 80               | 2.5 |
| 6) Strade urbane di scorrimento                          | 95               | 2.5 |
| 7) " di quartiere e locali                               | 90               | 2   |
| 8) Corsie preferenziali                                  | 95               | 2.5 |

Tabella 10 - Affidabilità e PSI finale ammissibile per tipo di strada (fonte Catalogo delle Pavimentazioni Stradali – CNR)



Standard Normal Deviate (Z<sub>R</sub>) Values Table 4.1. Corresponding to Selected Levels of Reliability Standard Normal Reliability, Deviate, Z<sub>R</sub> R (percent) -0.00050 60 -025370 -0.52475 -0.674O 841 -103785 90 -128291 -134092 -1405-147693 -155594 -164595 -175196 -188197 -205498 -232799 -309099 9 -375099 99

Tabella 11 - Fattore di affidabilità Zr per livelli di affidabilità % (fonte: AASHTO Guide for Design of Pavement Structure)

Si ricava pertanto logW18max = 6,80620659, da cui W18max = 6.400.392.

Pertanto, dall'applicazione della metodologia AASHTO, risulta che il numero massimo di assi standard da 80 kN (W18max) che la pavimentazione può sopportare durante la sua vita utile è pari a 6.400.392.



# 5 Verifica della pavimentazione

Noto dunque il numero W18max di passaggi di assi equivalenti da 8.2 t sopportabili dalla pavimentazione di assegnate caratteristiche, si verifica che esso sia maggiore o al più pari al numero totale di transiti di assi standard equivalenti da 8,2 t previsti alla fine della vita utile della pavimentazione, ossia che:

$$W_{18ma}x \ge W_{18}$$

nel presente caso risulta:

$$W_{18max} = 6.400.392 > W_{18} = 2.338.914$$

Pertanto, la pavimentazione in oggetto risulta verificata secondo la metodologia AASHTO, in quanto a fronte di circa 2,34 milioni di transiti di assi standard equivalenti da 8,2 t alla fine della vita utile dell'infrastruttura, il numero massimo di passaggi di assi equivalenti da 8.2 t sopportabili dalla pavimentazione è risultato di 6,4 milioni.

Luglio 2024

I progettisti



# Indice delle Figure

| Figura 1 - Intervento progettuale – Dettaglio4                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|
| Indice delle Tabelle                                                                                                           |
| Tabella 1 - Dati di traffico SP 91, gennaio 2024 (Fonte: CIREM]5                                                               |
| Tabella 2 - Fonte: Catalogo Italiano delle Pavimentazioni Stradali – CNR6                                                      |
| Tabella 3 - Fonte: Catalogo Italiano delle Pavimentazioni Stradali - CNR6                                                      |
| Tabella 4 - Spettro degli assi7                                                                                                |
| Tabella 5 - Frequenze parziali degli assi per ciascuna categoria di veicolo7                                                   |
| Tabella 6 - Frequenza parziale degli assi in transiti da 8 t8                                                                  |
| Tabella 7 - Coefficienti dell'indice di spessore (fonte: Ingegneria stradale vol. II - P. Ferrari e F. Giannini)9              |
| Tabella 8 - Valori di riferimento del coefficiente di drenaggio (fonte: AASHTO Guide for Design of Pavement Structure)         |
| Tabella 9 - Tabella per il calcolo dell'indice di struttura (Structural number) della pavimentazione                           |
| Tabella 10 - Affidabilità e PSI finale ammissibile per tipo di strada (fonte Catalogo delle Pavimentazioni Stradali – CNR)     |
| Tabella 11 - Fattore di affidabilità Zr per livelli di affidabilità % (fonte: AASHTO Guide for Design of Pavement Structure)12 |