Città Metropolitana di Cagliari

COMUNE DI CAPOTERRA

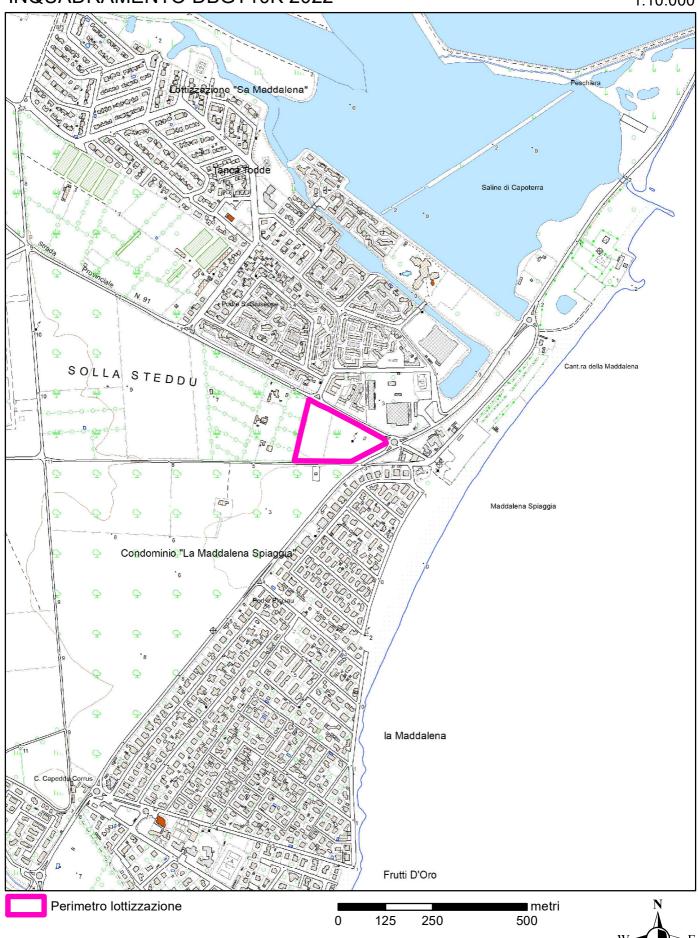
Richiesta di autorizzazione a lottizzare un'area in località La Maddalena Spiaggia Zona D2B.5 in Comune di Capoterra

Studio Geologico e Geotecnico

RELAZIONE GEOLOGICA E GEOTECNICA

ALL. -Scala

II Proponente


Sa Idanu Real Estate s.r.l.s.

I Tecnici

dott. geol. Angelo Vigo

DATA: SETTEMBRE 2025

Rev.: 00

INDICE

1	PREMESSA E RIFERIMENTI NORMATIVI	2
	1.1 Normativa di riferimento	
2	INQUADRAMENTO TERRITORIALE	3
	2.1 Descrizione sintetica della proposta di Piano Attuativo (Accodo di Programma)	5
3	· · · · · · · · · · · · · · · · · · ·	
4	INQUADRAMENTO MICROCLIMATICO	11
	4.1 Acquisizione ed analisi dei dati locali	11
	4.1.1 Analisi della distribuzione delle temperature medie diurne	13
	4.1.2 Elaborazione umbrotermica di Walter e Lieth	
5	CONTESTO GEOLOGICO-IDROGEOLOGICO LOCALE	15
	5.1.1 Assetto idrogeologico locale	17
	5.2 Idrografia a scala di bacino e locale	17
	5.2.1 Inquadramento nell'ambito del PAI idraulico vigente	18
6	· · · · · · · · · · · · · · · · · · ·	
7	CONCLUSIONI	

ALLEGATI IN APPENDICE

INQUADRAMENTO DBGT RAS scala 1:10.000 CARTA GEOLOGICA scala 1:1.000

PREMESSA E RIFERIMENTI NORMATIVI

Lo scrivente dott. geol. Angelo Vigo (n.604 Ordine dei Geologi della Regione Sardegna) ha ricevuto l'incarico per la redazione della Relazione Geologica e Geotecnica nell'ambito della "Richiesta di autorizzazione a lottizzare un'area in località La Maddalena spiaggia Zona D2B.5 in Comune di Capoterra".

Il presente elaborato, ed i relativi allegati, sono stati redatti in conformità alla normativa vigente, a corredo del Progetto summenzionato, del quale costituiscono parte integrante e non diversamente utilizzabile per scopi ed interventi differenti da quelli di destinazione brevemente illustrati di seguito. I risultati di indagini e prove, le elaborazioni dei dati e tutti i contenuti della presente relazione sono basati su indicazioni ed elementi progettuali forniti dalla Committenza, e riferibili solo ad essi.

Scopo del presente studio è quello di fornire il modello geologico dell'area d'intervento, con specifico approfondimento delle tematiche elencate di seguito:

	Inquadramento geologico a scala di bacino, con identificazione delle formazioni prevalenti e descrizione dell'assetto strutturale, e a scala di intervento con la definizione dei caratteri dei litotipi e dell'assetto litostratigrafico;
	Inquadramento geomorfologico a scala di bacino e a scala di intervento, con individuazione delle forme prevalenti, del loro grado di evoluzione e delle possibili problematiche a carico del territorio;
	Pericolosità geologica in rapporto alla pericolosità intrinseca del territorio ed agli effetti dell'inserimento dell'opera.
	Definizione del modello geotecnico
^ 6	tudio à stato articolato come segue:

- 1. reperimento delle fonti bibliografiche cui attingere per la definizione del contesto geologico-geomorfologico a scala locale e di bacino:
- analisi cartografica e fotointerpretazione:
- 3. rilevamento in situ a scala locale e prime ipotesi sui rapporti crono-stratigrafici e sulla geometria delle discontinuità;
- 4. definizione dell'assetto litostratigrafico locale mediante correlazione dei litotipi prevalenti;
- 5. definizione del modello geologico e del modello geotecnico.

territorio nazionale e di normative tecniche per le costruzioni in zona sismica".

1.1	Normativa	di rife	rimento
	IVOITITATIVA	ai iiio	1111101110

Circolare 2 febbraio 2009 n. 617 – Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni».
<u>DM 17 gennaio 2018, pubblicato in Gazzetta Ufficiale n. 42 del 20 febbraio 2018</u> - Serie generale contenente le nuove Norme Tecniche per le Costruzioni
Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al <u>decreto ministeriale 17 gennaio 2018. Gazzetta Ufficiale 11/2/2019, n. 35 - Suppl. ord. n. 5</u> ;
Legge 18 maggio 1989 n. 183 Norme per il riassetto organizzativo e funzionale della difesa del suolo;
Decreto legislativo 3 aprile 2006, n. 152 Norme in materia ambientale (T.U. dell'Ambiente);
Delib.G.R. 30 marzo 2004, n. 15/31 Pubblicata nel B.U. Sardegna 21 agosto 2004, n. 23. Disposizioni preliminari in attuazione dell'O.P.C.M. 20 marzo 2003, n. 3274 recante "Primi elementi in materia di criteri generali per la classificazione sismica del

2 INQUADRAMENTO TERRITORIALE

L'area d'intervento risulta ubicata nel Comune di Capoterra in località "La Maddalena" e confina, a nordovest, con altre proprietà, a nord-est con la Strada Provinciale n.91, in adiacenza ad un esistente ingresso per la lottizzazione "La Residenza del Sole", a sud-est con la Strada Statale n.195 e a sud-ovest con la Strada Vicinale di Santa Barbara: i terreni coinvolti, distinti nel Catasto Terreni di Capoterra al foglio 26, mappali 710 e 711, per una superficie complessiva di 23.246,00 mq, risultano essere suoli agricoli caratterizzati, secondo il classamento catastale, da una qualità della coltura "orto irriguo" con classe di produttività 2 ma, attualmente, non sono interessati da colture agricole.

Dal punto di vista cartografico la lottizzazione oggetto degli interventi è inquadrata nel Foglio 566 IV "La Maddalena" della Cartografia I.G.M. in scala 1:25.000 (Figura 2.1), e nella Sezione 566 010 "Ponte Marmora" della Carta Tecnica Regionale (C.T.R.) della Sardegna in scala 1: 10.000 (aggiornata nel DB10K 2022 della RAS) (Figura 2.2).

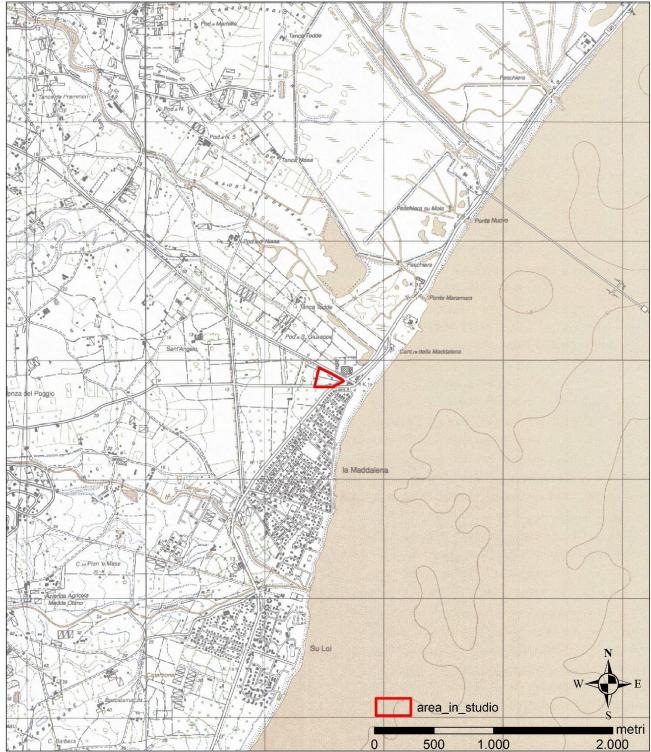


Figura 2.1. Inquadramento nella cartografia IGM.

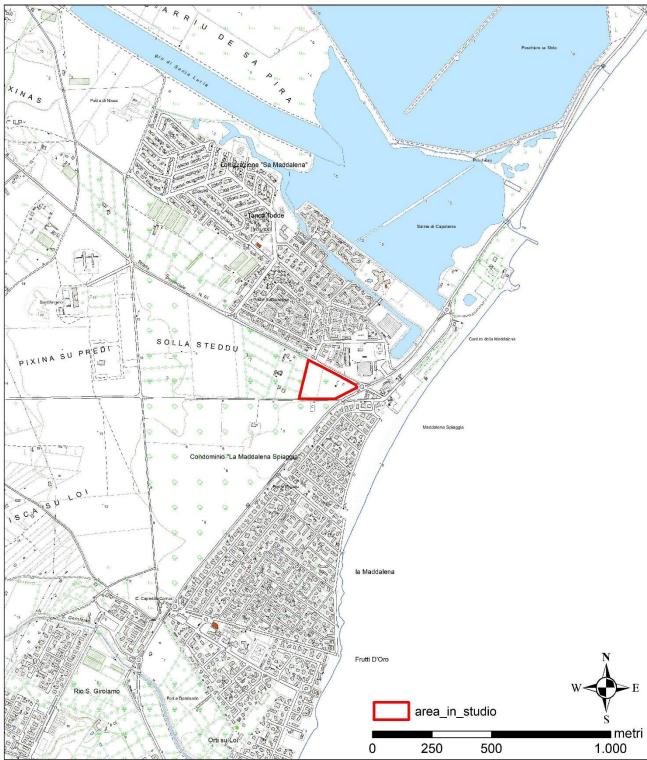


Figura 2.2. Inquadramento nell'ambito del DBGT10k 2022 della RAS.

2.1 Descrizione sintetica della proposta di Piano Attuativo (Accodo di Programma)

Il progetto prevede la realizzazione nella parte nord-ovest del piano di una strada di lottizzazione 1, perpendicolare all'esistente SP n.91 la quale sarà accessibile attraverso la futura realizzazione di una rotatoria esterna al piano di lottizzazione, che permetterà anche una maggior connessione con la preesistente lottizzazione "La Residenza del Sole" e una strada di lottizzazione 2, adiacente alla Strada Vicinale di Santa Barbara (Figura 2.3, Figura 2.4, Figura 2.5).

Sarà posizionato adiacente alla strada di lottizzazione 1 il lotto n.1, che avrà accesso sia dalla strada precedentemente citata, sia dalla Strada Vicinale di Santa Barbara.

Accanto al Lotto n.1, sarà invece posizionato il lotto servizi, accessibile dalla Strada Vicinale di Santa Barbara.

Si prevede la realizzazione di fasce di verde pubblico nella parte nord-ovest del Piano, adiacente alla SP n.91 e nella parte sud-est del Piano adiacente alla Strada Vicinale di Santa Barbara, favorendo la permeabilità delle aree esterne, funzionale alle esigenze di gestione sostenibile delle acque meteoriche e funge da schermatura per i lotti interni alla lottizzazione.

Esse inoltre avranno la funzione di perimetrare la fascia di rispetto dei "Fortini" in modo tale da garantirne una maggiore visibilità e fruibilità da parte dell'amministrazione comunale.

Sulla parte est del Piano, accessibile dalla strada di lottizzazione 2, sarà presente l'area parcheggio che grazie alla sua posizione servirà non solo l'area interessata dal progetto di Piano ma anche il contesto, come la "Maddalena Spiaggia" o le varie lottizzazioni vicine.

Figura 2.3. Estratto Stralcio esplicativo intervento in progetto.

Figura 2.4. Stralcio Tavola 4 – Planimetria generale della proposta di Accordo di programma.

Parallelamente alla viabilità suddetta saranno realizzate le reti tecnologiche (rete di smaltimento acque nere, rete smaltimento acque meteoriche, rete idrica, illuminazione pubblica, rete telefonica, rete elettrica) che serviranno i vari lotti. È ricompresa anche la superficie di 65 mq occupata dalla cabina ENEL.

SUPERFICIE D'INTERVENTO		23246,00	me
STANDARDS	67		-
superf. MINIMA di aree da destinare a cessione	20%	4649,20	me
DA PUC_zona D2B			
SERVIZI S1 + S2	10%	2324,60	me
S3 - verde pubblico attrezzato	5%	1162,30	me
S4 - parcheggi pubblici	5%	1162,30	me

CESSIONI DI PROGETTO						
SERVIZI S1 + S2	10,0189%	2329,00	mq			
S3 - verde pubblico attrezzato	10,3502%	2406,00	mq			
S4 - parcheggi pubblici	13,9508%	3243,00	mq			
aree CEDUTE IN PROGETTO	34,3199%	7978,00	mq			

Sup. da lottizzare	23246,00	mq
Superficie cessioni (S1+S2+S3+S4)	7978,00	mq
PERCENTUALE CESSIONI (min. 20%)	34,3199%	
Superficie strade/marciapiedi	1253,00	mq
Somma sup. cessioni	9231,00	mq
Superficie netta - cessioni	14015,00	mq
Cabina ENEL	65,00	mq
SUPERFICIE FONDIARIA = Superficie - cessioni - ENEL	13950,00	mq
Indice territoriale	1,00	mc/m
Volume realizzabile totale (Sup. * i.t)	23246,00	mc
Volume PUBBLICO (10% Vol. totale)	2324,60	me
Volume LOTTI PRIVATI	20921,40	mc
Indice fabbricabilità fondiario definitivo	1,499741935483870	me/me

LOTTO	Area LOTTIZZATA	Vol. Totale	Sup. Coperta		
	mq	me	mq		
1	13950,00	20921,40	6975,00		

Figura 2.5.Parametri della lottizzazione

3 INQUADRAMENTO GEOLOGICO-GEOMORFOLOGICO DELL'AREA VASTA

Il territorio di Macchiareddu ricade sul margine meridionale del *Grafeni del Campidano*, una vasta fossa tettonica orientata su un asse NW-SE, che congiunge idealmente il Golfo di Cagliari con quello di Oristano (Figura 3.1)¹. Essa riattiva parte della porzione meridionale della più antica *Fossa Sarda Auct.*, un semi-graben originatosi nella fase di *rifting Burdigaliano* per effetto della tettonica distensiva che ha portato al distacco e alla rotazione del blocco Sardo-Corso dalla penisola Iberica.

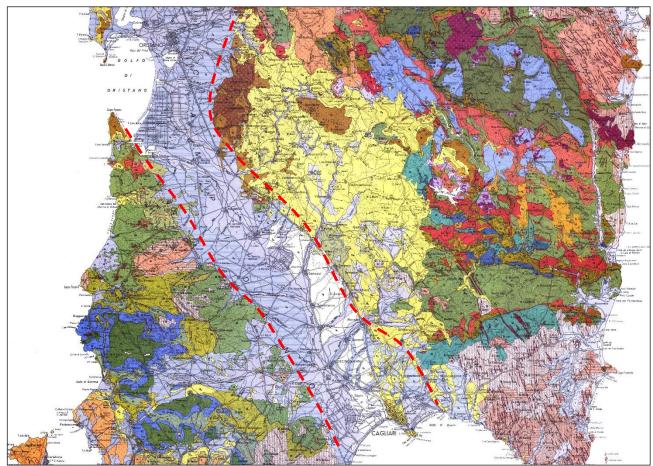


Figura 3.1. Stralcio Carta Geologica della Sardegna (L.Carmignani, S.Barca, G.Oggiano, P.C.Pertusati, I.Salvadori): le linee tratteggiate indicano approssimativamente i limiti del Graben del Campidano.

Dal Miocene Superiore al Plio-Pleistocene, l'Isola è interessata da una nuova fase distensiva collegata all'apertura del Bacino Balearico e del Tirreno centro-meridionale: nel Pliocene Inferiore l'iniziale subsidenza, che raggiunge il picco nel Pliocene Medio-Superiore, favorisce l'ingressione marina nelle aree più depresse, con depositi localizzati nel Sinis e nel Campidano di Cagliari e Oristano. In questa fase la formazione del Graben del Campidano si accompagna alla progressiva colmata, in parte sin-tettonica, di sedimenti continentali (Formazione di Samassi e Alluvioni antiche Auct.), in facies fluvio-deltizie.

Nell'area in studio il limite è collocabile in prossimità dei rilievi di Capoterra-Uta, modellati prevalentemente sul basamento paleozoico in facies anchimetamorfica (Arenarie di San Vito) e cristallina (Leucograniti dell'Unità Intrusiva di Villacidro), in corrispondenza della quale spiccano le cime con le maggiori altimetrie, quali Monte Lattias (1086 m s.l.m.), Monte Arcosu (946 m s.l.m.) e Monte Seddas (850 m s.l.m.).

In Figura 3.2 è riportato lo schema Geologico-Strutturale del margine sud-occidentale del Campidano, nel quale sono evidenziati i principali sistemi di faglie dirette (*Master Faults*), con una sensibile componente trascorrente, orientate prevalentemente NW-SE e, subordinatamente, N-S e NE-SW. Si tratta in ogni caso di faglie a gradinata con rigetti di alcune centinaia di metri, attualmente inattive, note soprattutto per la notevole circolazione idrotermale, evidenziata dalle numerose sorgenti allineate lungo la Faglia di Siliqua (Pecorini, Pala, Porcu, 1976) (Figura 3.3).

_

¹ Lo schema è tratto dalle **Note Illustrative della Carta Geologica d'Italia, Foglio 557 – Cagliari** alle quali sono riferibili parte della Letteratura geologico-strutturale contenuta nel presente studio. Nessuna modifica sostanziale è stata operata sugli elementi riportati.

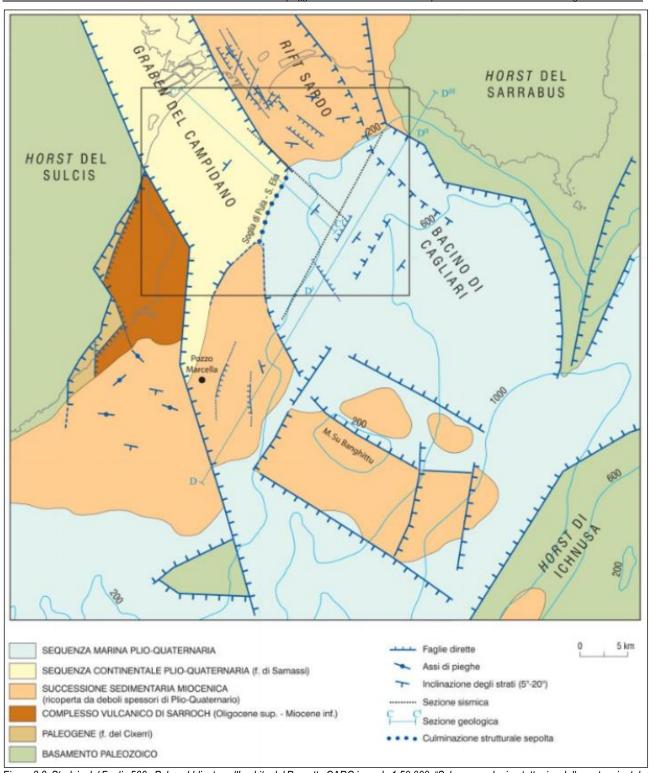


Figura 3.2. Stralcio del Foglio 566 - Pula pubblicato nell'ambito del Progetto CARG in scala 1:50.000: "Schema geologico-tettonico della parte orientale del margine meridionale della Sardegna".

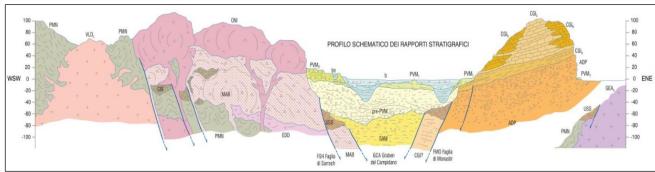


Figura 3.3. Stralcio del Foglio 566: "Profilo schematico dei rapporti stratigrafici".

La colmata sedimentaria, in parte sintettonica, si chiude nell'area con le alluvioni ciottolose tardo-pleistoceniche che si espandono in coni di deiezione, talvolta anche di notevole estensione: si tratta di sedimenti grossolani e caotici tipici di un ambiente periglaciale

caratterizzato da un clima prevalentemente freddo e arido, che determina la netta prevalenza della componente erosiva, cui si deve l'incisione di valli strette e profonde nel massiccio cristallino-metamorfico di Capoterra.

Nella fattispecie l'ampio ventaglio delle conoidi si origina allo sbocco delle valli del Rio San Gerolamo e del Rio Masone Ollastu (Figura 3.4) ricoprendo l'originario *pediment* con una coltre detritica che raggiunge potenze nell'ordine di alcune decine di metri, rapidamente decrescenti da ovest ad est. Nell'ambito della Cartografia Geologica di base della RAS in scala 1:25.000, dette alluvioni afferiscono al *Sintema di Portovesme - Lltofacles nel Subsintema di Portoscuso* e si presentano spesso terrazzate, a partire dallo stesso rio S.Lucia che le reincide talora per alcuni metri entro l'attuale tracciato, con una composizione ciottoloso-sabbiosa, non di rado inglobante blocchi e trovanti decimetrici, e subordinatamente intercalazioni lentiformi di livelli argillosi e argilloso-sabbiosi.

L'ambiente di deposizione si caratterizza quindi per un'elevata energia di trasporto ai danni delle abbondanti falde detritiche che orlavano i versanti. Dal punto di vista litologico, i detriti constano in prevalenza di ciottoli di scisto, di quarzo e di andesite, generalmente poco elaborati e subangolari, frammisti a sabbia quarzosa e ad argilla più o meno ferruginosa e rubefatta (*ferrettizzazione*) per ossidazione in ambiente sub-aereo.

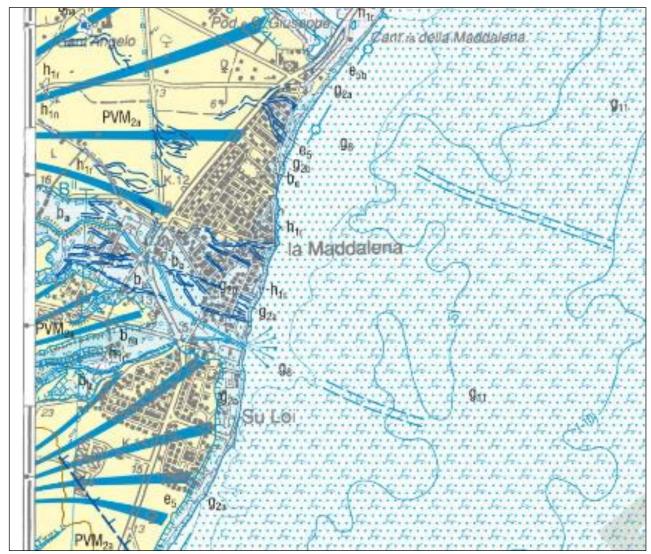


Figura 3.4. Stralcio del Foglio 566 – Pula, pubblicato nell'ambito del Progetto CARG in scala 1:50.000 (qui riprodotto fuori scala orignale). Benché ai margini, sono visibili i simboli che indicano i conoidi tardo pleistocenici spinti sino ai margini della costa attuale.

4 INQUADRAMENTO MICROCLIMATICO

La posizione geografica, il carattere di insularità e l'orografia della Sardegna costituiscono i principali fattori che ne condizionano il clima (M. Pinna, 1954): occupando il centro del bacino occidentale del mediterraneo, essa è esposta al dominio dei venti occidentali e delle masse d'aria calda tropicale.

Nella classificazione di Köppen (1936) il clima regionale ricade nel novero di quelli temperati, corrispondente al tipo C-Climi temperati delle medie latitudini caratterizzato dal mese più freddo con temperature medie inferiori a 18°C ma superiore a -3°C e da almeno un mese avente temperatura media pari ad almeno 10°C. Si tratta quindi di un clima che esprime sia una stagione estiva che una invernale, ed è genericamente definito come clima Mediterraneo.

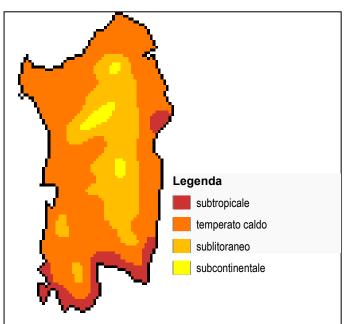


Figura 4.1. Climi temperati (tipo C di Köppen) caratteristici della Sardegna nella classificazione di Pinna (da Carta Climatica d'Italia - Modificata).

In ambito regionale la quasi totalità del territorio, ad eccezione delle zone interne e montuose, ricade nel sottotipo Csa della classificazione di Köppen, che si caratterizza per una temperatura media, nel mese più caldo, superiore ai 22°C e precipitazioni, nel mese più secco del semestre arido, inferiore a un terzo di quello del mese invernale più piovoso, e comunque non superiore a 30 mm. Tale classificazione è stata ulteriormente dettagliata da Pinna nella Carta Climatica d'Italia (Figura 4.1) dove sono distinti quattro sottotipi del tipo C: subtropicale lungo tutta la costa meridionale e per un breve tratto della costa orientale (Siniscola-Orosei); temperato caldo nelle restanti zone costiere, in particolare quelle occidentali, e per tutto il Campidano e Logudoro-Marghine; le aree interne e montuose sono interessate prevalentemente dai climi sublitoraneo e, limitatamente ai rilievi più pronunciati, subcontinentale. Il complesso industriale di Macchiareddu ricade nel primo sottotipo.

La peculiare differenziazione delle stagioni deriva principalmente dalla migrazione del limite settentrionale delle celle di alta pressione che insistono nelle fasce subtropicali (Peixoto, 1992). Lo spostamento dell'alta pressione (Anticiclone delle Azzorre) raggiunge l'arco alpino nei mesi estivi, determinando un regime stabile talvolta tipico di climi

subtropicali aridi, con temperature elevate e precipitazioni scarse o assenti lungo le coste.

A partire dall'autunno l'alta pressione rimane confinata al margine Nordafricano, favorendo la circolazione di aria umida atlantica che, scontrandosi con le masse d'aria calda ancora stazionanti sul mediterraneo, dà vita alla *ciclogenesi*² che interessa la Sardegna (Pinna, 1954) generando le perturbazioni cui si deve il più elevato apporto in termini di precipitazioni, seguito dal meno abbondante massimo primaverile.

4.1 Acquisizione ed analisi dei dati locali

La base dati di riferimento è stata ricavata dal nuovo Studio dell'Idrologia Superficiale della Sardegna (SISS) pubblicato nel 1998 per conto della R.A.S. dall'Ente Autonomo del Flumendosa (oggi ENAS), nel quale si considera un modulo di riferimento che va dal 1922 al 1992 per le pluviometrie e dal 1924 al 1992 per le termometrie. Dette misure sono state completate con i dati resi disponibili dal Servizio tutela e gestione delle risorse idriche della RAS sul sito istituzionale: il modulo pluviometrico è stato esteso sino al 2007, per un totale di 86 anni, mentre quello delle temperature riporta le misure sino al 2011 per un totale di 89 anni. La stazione pluviometrica presa a riferimento è quella di Capoterra, mentre per le temperature i dati sono stati attinti dagli annali delle stazioni di Uta (1922-1992) e Decimomannu (1993-2007).

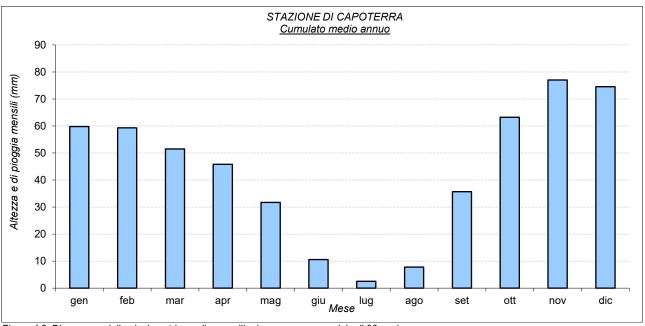
Di seguito (Tabella 1) si riportano le medie delle precipitazioni e delle temperature medie diurne mensili rispetto al modulo considerato:

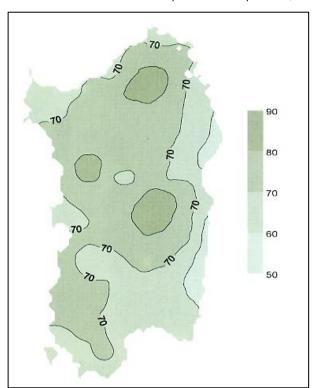
Tabella 1. Medie termo-pluviometriche dell'area di intervento.

MESE	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC	ANNUA
MEDIA PLUV. (mm)	59,8	59,3	51,5	45,8	31,7	10,6	2,5	7,8	35,7	63,2	77,0	74,6	519,5 cumulato
MEDIA TEMP. DIURNE (°C)	9,4	9,9	11,8	14,1	17,9	22,2	25,3	25,5	22,5	18,5	14,0	10,8	16.8

I dati pluviometrici rivelano l'andamento che caratterizza il settore costiero meridionale, con una evidente prevalenza delle precipitazioni nel periodo autunnale ed un minimo altrettanto netto nel periodo estivo (Istogramma in *Figura 5.2*Figura 4.2).

² La regione mediterranea presenta la più alta frequenza e concentrazione di ciclogenesi del mondo (Landsberg, 1988).




Figura 4.2. Diagramma delle pluviometrie medie mensili ed annue, su un modulo di 86 anni.

Il trimestre invernale (dic-feb), in particolare, fa registrare un cumulato medio pari a circa 193 mm, contro i 176,0 mm del trimestre autunnale e i 129 mm di quello primaverile. In linea con le zone costiere della Sardegna, dove la norma è costituita da estati aride con scarsissime precipitazioni, nell'area in studio durante il trimestre giugno-agosto si registra un'altezza media di pioggia pari a circa 21 mm, che si concentrano in gran parte nel mese di giugno.

La distribuzione delle precipitazioni, quindi, ricalca tipicamente la media dei climi mediterranei costieri, sebbene il massimo, non particolarmente abbondante, si collochi in novembre (77 mm) anziché nel trimestre invernale, dove solo il mese di dicembre vi si avvicina (75 mm). Il minimo, ricade invece nel pieno del trimestre estivo, nel mese di luglio, con soli 2,5 mm.

Per quanto attiene la durata e l'intensità delle piogge, esse sono rappresentate a scala regionale nello studio "*Il clima in Sardegna*" predisposto a cura di P.A. Chessa e A. Delitala per il *Dipartimento Specialistico Regionale Idrometeoclimatico* dell'ARPA Sardegna (http://www.sar.sardegna.it).

Tale studio è stato realizzato su dati circoscritti al periodo 1951-1980 per temperature e precipitazioni, e al 1951-1993 per i restanti parametri. Nella fattispecie, è di notevole interesse la distribuzione del numero di giorni piovosi sul territorio regionale (Figura 4.3 sx), che evidenzia un massimo di oltre 80 giorni in corrispondenza dell'altipiano di Campeda, e dei massicci del Gennargentu e del Limbara. L'area di Macchiareddu ricade tra quelle a minore piovosità, con valori medi annui compresi tra 50 e 60 giorni.

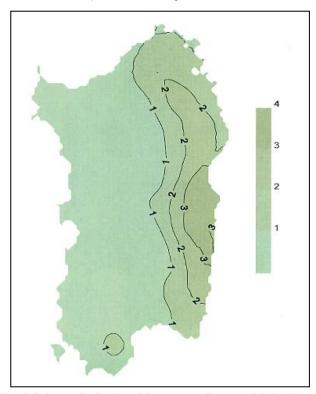


Figura 4.3. A sinistra, distribuzione del numero medio annuo dei giorni piovosi. A destra, distribuzione del numero medio annuo dei giorni con altezze di pioggia superiori a 50 mm.

In termini di intensità giornaliere, espresse in numero medio di giorni per altezza di pioggia, è significativa la carta regionale del numero

di giorni con valore di precipitazioni superiore a 50 mm (Figura 4.3 dx), nella quale si evidenzia un netto gradiente W-E con oltre 3 giorni piovosi in corrispondenza dell'Ogliastra: i rovesci violenti ed intensi sono quindi nettamente localizzati lungo il settore orientale dell'isola, benché il numero dei giorni piovosi sia tra i più bassi, contrariamente a quanto accade nel settore in studio dove al valore non elevato dei giorni piovosi corrisponde comunque una distribuzione più uniforme delle precipitazioni.

4.1.1 Analisi della distribuzione delle temperature medie diurne

La temperatura è un parametro geograficamente più stabile e meno soggetto a variazioni locali rispetto alle precipitazioni, per cui è oggettivamente arduo, e talora artificioso, stabilire correlazioni a scala così ridotta. Con i dati riferiti alla Tabella 2 è stato elaborato il grafico (Figura 4.4) della distribuzione delle medie diurne mensili.

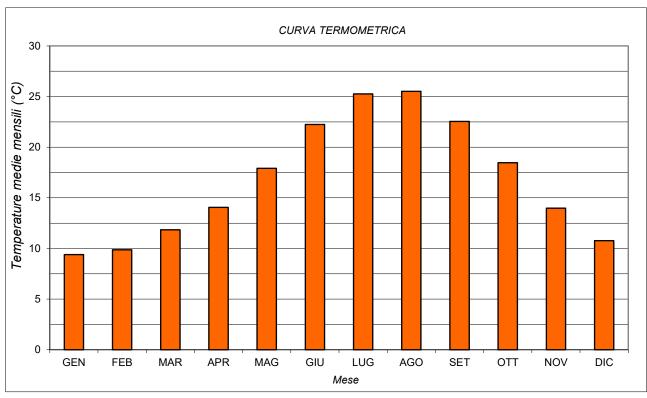


Figura 4.4. Trend annuo delle temperature medie mensili.

La stazione di riferimento descrive un clima costiero mite contraddistinto da una media annua pari a 16,8°C, con un trend delle temperature che presenta il picco estivo nei mesi di luglio ed agosto, con medie praticamente coincidenti (rispettivamente 25,3 e 25,5°C), leggermente più elevate di quelle medie della costa, di norma entro l'isoterma dei 24°C (P.A. Chessa, A. Delitala, 1997). Anche la stagione invernale rientra pienamente nei canoni descritti per il sottotipo climatico, con un minimo di 9,4°C collocato nel mese di gennaio, seguito da 9,9°C in febbraio.

Tali valori sono tipici di un inverno mite che si accompagna ad una ridotta escursione termica annua, ma con un valore medio di 16,0°C, appena superiore all'isodiafora dei 15°C che segna il limite minimo ubicato nella costa meridionale (Pinna, 1954).

4.1.2 Elaborazione umbrotermica di Walter e Lieth

Nella definizione del regime microclimatico è di notevole utilità la correlazione tra la curva termometrica e quella pluviometrica, ottenuta mediante la costruzione del diagramma di Walter e Lieth (Figura 4.5) sulle medie dell'intero comune.

Il diagramma confronta in modo diretto l'andamento stagionale dei due parametri, posti convenzionalmente su scale fisse, con quella delle precipitazioni doppia rispetto a quella delle temperature, evidenziandone il trend stagionale e le reciproche interazioni nel corso dell'anno.

Nel caso in oggetto, si osserva la caratteristica "sfasatura" tra le due curve, tipica del clima mediterraneo: la curva delle temperature subisce un netto incremento nella stagione estiva, con un massimo in luglio-agosto, mentre contemporaneamente le precipitazioni calano ai minimi annui; nella stagione autunno-invernale il processo si inverte, con una progressiva diminuzione delle temperature, con un minimo tra dicembre e gennaio, a fronte di un rapido incremento delle precipitazioni che culmina nei mesi di novembre-dicembre.

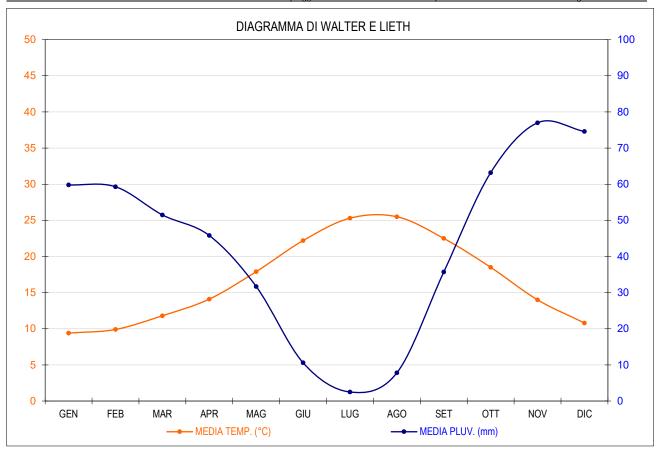


Figura 4.5. Diagramma umbrotermico di Walter-Lieth riferito alle medie dell'area di intervento.

Si registrano quindi due punti di intersezione delle curve che delimitano sulle ascisse l'intervallo di aridità cui corrisponde un periodo di deficit idrico: esso è compreso, in questo caso, tra maggio e settembre, come di norma accade nelle coste della Sardegna e si caratterizza per un tasso elevato di evapotraspirazione ed un ridotto apporto idrometeorico.

L'alternanza così netta di stagioni secche e stagioni umide riveste notevole importanza nella gestione del territorio sia sotto il profilo idrogeologico ed idraulico, con apprezzabili oscillazioni delle portate dei corsi d'acqua principali e delle aste secondarie.

5 CONTESTO GEOLOGICO-IDROGEOLOGICO LOCALE

La lottizzazione sorgerà su un'area pianeggiante alla quota media di circa 3,50 metri s.l.m. su un modesto terrazzo alluvionale che funge da spartiacque costiero tra un impluvio minore, afferente al San Girolamo, e il Rio Santa Lucia.

Tale morfologia si apprezza piuttosto agevolmente nel modello digitale del terreno tratto dal rilievo Lidar 2008 con maglia 1 metro (Figura 5.1): nonostante la presenza di tale, modesta, gibbosità sia evidente sia a scala vasta che a quella di sedime l'area presenta una giacitura coerente con quella della circostante piana costiera, al limite con lievi depressioni nel settore nord-occidentale, parzialmente regolarizzate con la realizzazione della Residenza del Sole.

Su tale lembo della piana si protendono, anche oltre l'attuale limite costiero, le propaggini delle conoidi alluvionali prodotte dallo smantellamento tardo-pleistocenico dei rilievi granitoidi dell'entroterra Capoterrese, reincise, talora in modo piuttosto netto, dall'attuale idrografia, sino a produrre significative forme terrazzate che procedendo verso monte si assottigliano senza particolari soluzioni di continuità sulle sponde rocciose dei torrenti minori (Rio San Girolamo e Rio Masone 'e Ollastu).

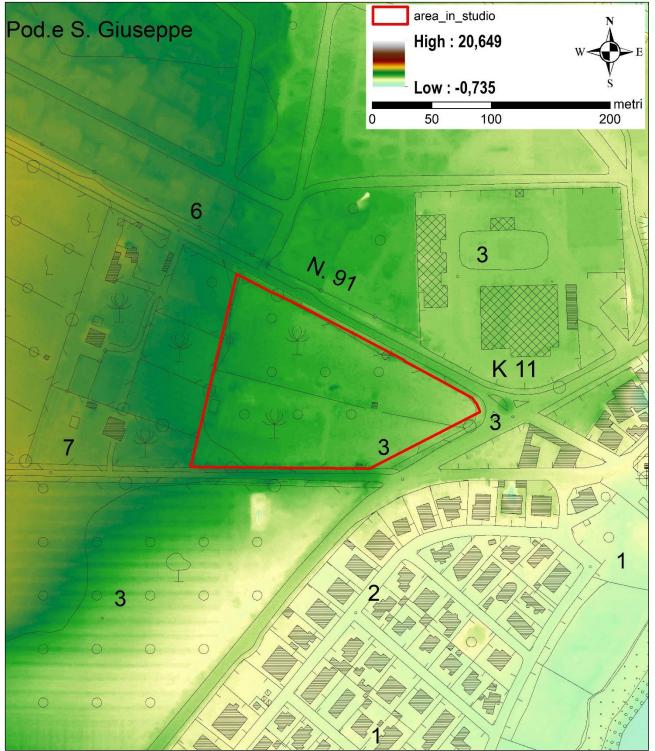


Figura 5.1. Modello digitale del terreno ricavato dal volo costiero LIDAR 2008.

Il corpo della conoide si contraddistingue per una forte componente clastica, generalmente grossolana e poco elaborata, in matrice sabbioso-limosa fortemente ossidata dal colore tipicamente rosso-arancio (ferrettizzazione). Si tratta di depositi spiccatamente eterometrici, spesso caratterizzati da stratificazione planare o incrociata, con frequenti intercalazioni limoso-argillose in giacitura lentiforme, riconducibili a locali e sensibili variazioni dell'energia di trasporto.

In accordo con le dinamiche descritte in precedenza, la composizione petrografica rispecchia quella del massiccio collinare da cui si sono originati tali depositi, con una netta prevalenza di clasti granitoidi generalmente sani o debolmente alterati, frammisti a metarenarie competenti e, assai più di rado, scaglie metapelitiche e scistose. L'insieme è accreditabile di una potenza da metrica a decametrica, di difficile stima in assenza di indagini, che verranno eseguite in fase esecutiva.

La fisiografia sub-pianeggiante dell'area e dell'ampio territorio limitrofo pone il lotto di intervento al riparo da fenomeni di dissesto di tipo gravitativo, né sono noti casi di subsidenza naturale o sink-holes. L'area, coerentemente, nell'ambito del PAI vigente, approvato con DPGR n. 95 del 07.11.2018 - BURAS n. 52 del 22.11.2018, è stata inserita in classe di pericolosità moderata (Hg0), come illustrato in Figura 5.2.

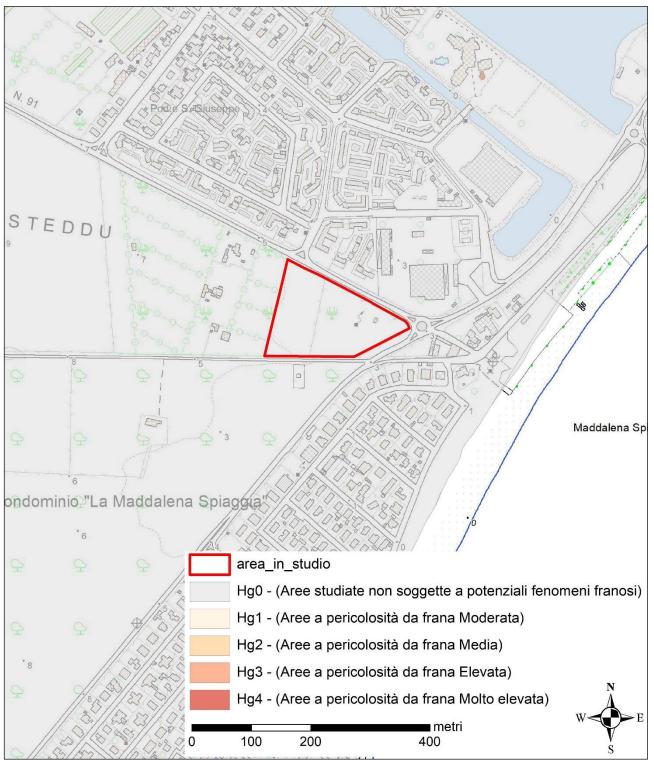


Figura 5.2. Inquadramento nell'ambito del PAI vigente, Pericolosità da Frana

Tale assetto è confermato dalla perimetrazione riferita alla "Variante al Piano di Assetto Idrogeologico (PAI) - parte frana derivante dallo studio di dettaglio e approfondimento del quadro conoscitivo della pericolosità e del rischio da frana nei sub bacini 1 (Sulcis) – 2 (Tirso) – 4 (Liscia) – 5 (Posada – Cedrino) – 6 (Sud-Orientale) – 7 (Flumendosa-Campidano-Cixerri) adottata in via preliminare con Delibera del Comitato Istituzionale n.14 del 28.10.2024

5.1.1 Assetto idrogeologico locale

I depositi di conoide detritica su cui ricade la lottizzazione costituiscono l'unità idrogeologica più estesa dell'area vasta compresa tra l'abitato di Capoterra e i villaggi costieri.

Si tratta, come ampiamente illustrato in precedenza, di depositi prevalentemente sabbioso-ghiaiosi, generalmente contraddistinti da una permeabilità medio-alta, con interdigitazioni più schiettamente limoso-argillose in giacitura prevalentemente lentiforme. Queste ultime, localmente, possono isolare modeste falde sospese e confinare quelle più profonde.

Si tratta in definitiva quindi di un acquifero multistrato, di spessore pluridecametrico e buona trasmissività.

5.2 Idrografia a scala di bacino e locale

Come anticipato, l'area ricade su un modesto spartiacque che costituisce la sponda destra del tratto focivo del Rio di Santa Lucia (Figura 5.3), il quale si getta nell'estremità sud-occidentale dello stagno di Cagliari, nel quale è ricavata la peschiera di Capoterra, il cui varco di comunicazione con il mare è rappresentato dal Ponte Maramura, salito alle recenti cronache per il sormonto ed il consequente danneggiamento delle spalle in occasione della piena eccezionale del 10 ottobre 2018.

Il Rio di Santa Lucia è un corso d'acqua sotteso ad un bacino di oltre 110 km² nel quale confluiscono tre aste di un certo rilievo (Rio Gutturu Mannu, Rio Guttureddu e Riu Sa Canna) che apportano un contributo notevole sia in termini di portata liquida che di portata solida, spesso trascinando a valle considerevoli quantità di detriti e legnatico che mandano in crisi, con relativa facilità e frequenza, le principali opere di attraversamento in area pedemontana e costiera.

Figura 5.3. Tratti costieri del reticolo idrografico.

Il reticolo si presenta piuttosto fitto e ben sviluppato, con un pattern marcatamente dendritico sebbene facilmente riconoscibile un consistente controllo tettonico, soprattutto nelle lineazioni a scala regionale, cui si possono attribuire le rapide variazioni di direzione ad angolo retto, spesso associate a locali salti di pendio. Il tratto iuvenile, in particolare, rivela una certa tendenza al ringiovanimento con forre piuttosto incise e frequenti meandri incassati: l'elevata pendenza media del bacino e la presenza di estese coperture detritiche in plaghe e piccole conoidi quiescenti, favoriscono la riattivazione degli intensi processi di erosione e trasporto descritti in precedenza, allorquando si registrano apporti idrometeorici carattere а Ш eccezionale. sistema stagnale assorbe con una certa facilità le piene ordinarie, fungendo da cassa di espansione, ma ha nello sbocco a mare il suo principale limite che, come osservato di recente, può portare rapidamente collasso del sistema focivo.

5.2.1 Inquadramento nell'ambito del PAI idraulico vigente.

Le perimetrazioni delle aree inondabili afferenti alle aste fluviali riportate in precedenza sono riferibili all'Aggiornamento ai sensi dell'art.37, comma 7 delle Norme di Attuazione del PAI della perimetrazione della pericolosità idraulica e del rischio idraulico sul tratto del Rio San Girolamo e dalla foce all'attraversamento della SS195 a seguito della realizzazione di opere di mitigazione" adottato con delibera del comitato istituzionale n.12 del 16.06.2020, coordinate con le perimetrazioni vigenti alla data dello studio (Figura 5.4).

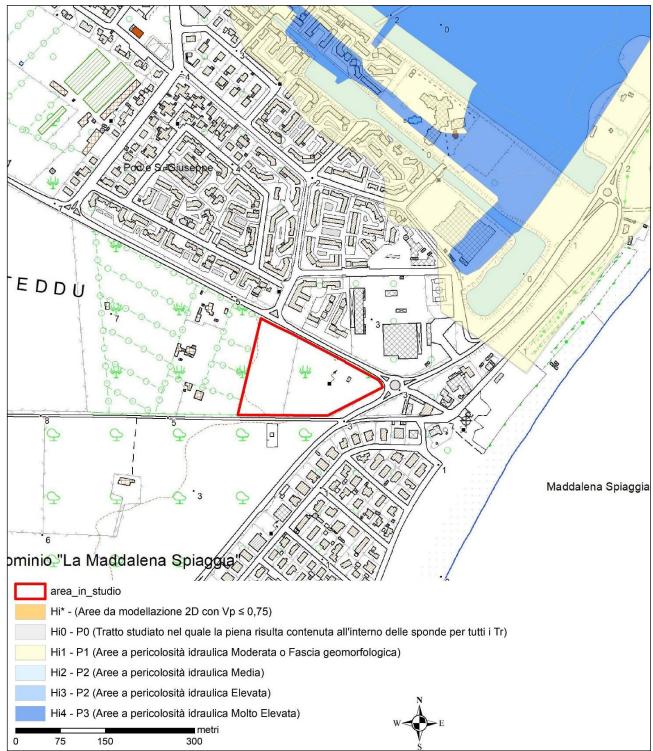


Figura 5.4. Stralcio dell'inquadramento nell'ambito del PAI idraulico vigente

Come si osserva nel suddetto stralcio cartografico, non si registrano sovrapposizioni tra dette aree ed il lotto oggetto di pianificazione.

6 ASSETTO LITOTECNICO

In accordo con la Committenza, si è stabilito di rimandare le indagini geognostiche necessarie a caratterizzare il sedime nel dettaglio, alla fase di progettazione delle singole opere Tutti i dati e le verifiche compiute nel presente studio, quindi, dovranno **necessariamente** essere confermate dalle indagini.

La stratigrafia di riferimento, in attesa delle verifiche in campo, può rappresentarsi come segue:

Profondità da p.c.(m)	Litotipo
0,00 - 0,50	Suolo sabbioso-ghiaioso rimaneggiato e sciolto
0,50 – 3,00 metri	Ghiaie sabbiose e sabbioso limose, ben addensate e compatte.

In assenza di dati puntuali sul sito, i parametri caratteristici sono stati mutuati e mediati da studi condotti su aree contermini, e dai dati di letteratura.

Suolo rimaneggiato (0.00 – 0,50 metri da p.c.)

Sabbie ghiaioso-limose, per lo più sciolte e incoerenti, fortemente rimaneggiate dalla passata attività agricola. Vegetata nei primi decimetri. Mediamente attritive e assai compressibili. Colore ocra-nocciola.

Alluvioni ghiaioso-sabbiose (0.50 – 2,00 metri da p.c.)

Si tratta di un litotipo detritico grossolano e risulta incoerente e assai ben addensato, a luoghi con passaggi semicoerenti. Si caratterizza per la buona resistenza al taglio, espressa quasi esclusivamente nel dominio attritivo, e la modesta compressibilità. La matrice talora può localmente e sporadicamente arricchirsi in limo ed argilla. Colore nocciola-rossastro.

 $\begin{array}{lll} \gamma_{\text{nat}} & = 18.50 \text{ kN/m}^3 \\ \gamma_{\text{sat}} & = 20.00 \text{ kN/m}^3 \\ \phi' & = 31^{\circ}\text{-}35^{\circ} \\ c' & = 0,0 - 5,0 \text{ kPa} \\ \text{Ei} & = 30 - 6 \text{ 0 MPa} \end{array}$

7 CONCLUSIONI

Il sedime si colloca in cima ad un modesto terrazzo alluvionale, ad una quota di circa 3,50 metri s.l.m., tra la strada vicinale Santa Barbara e la SP91. La fisiografia sub-pianeggiante la preserva da fenomeni di instabilità gravitativa potenziale o attiva, e non sono segnalati fenomeni di subsidenza naturale. Nell'ambito dei piani stralcio vigenti il lotto non risulta interessato dalla perimetrazione di aree inondabili e non ricade in classe di pericolosità da frana.

Il litotipo prevalente entro 2,00 metri di profondità, ghiaioso-sabbioso, è accreditato di buona resistenza al taglio e modesta compressibilità.

Tali dati, sebbene congruenti con il contesto litostratigrafico, dovranno comunque essere validati sulla base delle indagini puntuali da eseguire in corso d'opera.